Objectives

By the end of the presentation, the audience will be able to:

• Explain the differences in complexity for biologic and non-biologic medications
• State length of market exclusivity granted to biologic medications
• Explain the criteria for a biologic medication to be granted approval to be marketed as a biosimilar

Do we answer these questions the same way?

• A physician calls the pharmacist, saying “I heard there is a ‘generic’ version of Cymbalta® being released. Is it going to be the same thing as the brand product?”

• A physician calls the pharmacist, saying “I heard there is a ‘generic’ version of Remicade® being released. Is it going to be the same thing as the brand product?”

The Scene for Debate

• Brand vs. Generic Drugs
 ▪ Hatch-Waxman Act
 ▪ Small molecule drugs only
 ▪ Biologic Drugs
 ▪ Different problems
 ▪ Development
 ▪ Production
Synonym Bank

- Biosimilars
- Follow-on biologics
- Subsequent entry biologics (Can)
- Similar biological medicinal products
- Biogenerics
- Generic biopharmaceuticals
- Comparable biologics

Biopharmaceuticals

- In general
 - Proteins
 - Derived from living organisms
 - Bacteria, yeast, mammalian cells
 - Complex manufacturing process
 - Usually given IV or subcutaneously
 - Treat complex conditions

Biopharmaceutical

- Genetic material integrated into organism
- Organism makes protein from DNA
- Protein folded / modified
- Protein extracted by manufacturer
- Many copies are made
- Copies sealed in vials
- Drug sold for minimal fee

AMGEN

- AMGEN Biopharmaceutical Development
Biotechnology

• Advantages
 ▫ Targeted therapy
 ▫ Possibly alter disease course
 ▫ Cancer therapeutics
 ▫ Immune conditions
 ▫ Efficacy
 ▫ May be more effective than many non-biologic

Size Matters

• Proteins vs. Chemicals
 ▫ Proteins larger, more complex

• Molecular Weights
 ▫ Aspirin 180 D
 ▫ Enoxaparin 4500 D
 ▫ Rituximab 145 kD

Challenges for Biosimilars

• Limitations to what can be studied
 ▫ Ethics
 ▫ Innovation

Challenges for Biosimilars

• Product Variability
 ▫ Within reference products
 ▫ Among biosimilars

• Bio-identical?
 ▫ Key point in debate
Challenges for Biosimilars

Immunogenicity
- Immune recognition of biologics
 - Drug deactivation
 - Treatment failure
 - Immune response
- Causes of immunogenicity
 - Multi-factorial
 - Product variability
 - Medication aggregation
 - Immune suppression

Immunogenicity

- Multi-factorial
 - Immune response
 - Hatch – Waxman Act

Challenges for Biosimilars

- Cost Savings
 - Development
 - $2-3 million vs. $75-250 million
 - Manufacturing
 - Much more expensive
 - Competition
 - Need competitors
 - How much can we save?

Legislative Background

- Hatch – Waxman Act
 - Generic drug approval
 - Abbreviated New Drug Application (ANDA)
 - Period of exclusivity

Do a double-blind test. Give the new drug to rich patients and a placebo to the poor. No worse getting their hopes up. They couldn’t afford it even if it works.
Legislative Background

- 505(b)(2)
 - Amendment to Hatch-Waxman
 - Hybrid between ANDA and NDA
 - Small changes in parent product
 - Safety / efficacy in humans
 - Examples:
 - Follistem®, Glucagen®, Omnitrope™

The European Way

- European Medicines Agency
 - Biosimilar pathway approved in 2005
 - Addressed biosimilars specifically
 - Approved products
 - 14 drugs based on 3 reference products
 - 1 product rejected by EMA
 - 3 products company withdrawn
 - Quite limited!

Affordable Care Act

Biologics Price Competition and Innovation Act (BPCI)

- Biosimilars may enter market
 - Competition / Innovation?
 - No “tracing” the elephant
 - 12 years of exclusivity for reference product
 - Several important drugs to lose patent in the next few years
 - Lantus®, Humalog®, Humira®, Neupogen®

BPCI

- Requirements to demonstrate biosimilarity:
 - Work the same
 - Already approved for a condition
 - Same strength, route, dosage form
 - Chemically the same
 - Minor differences allowed
BCPI

- To demonstrate biosimilarity
 - Analyzed in a laboratory
 - Assessed in animals
 - At least one study in humans
 - Approved condition
 - Shows physiologic similarity, lack of immunogenicity
 - FDA has discretion to determine how necessary these elements are

Interchangeability

- Per BCPI
 - May substitute without authorizing provider
 - Somewhat controversial
 - Colorado State Law
 - Requiring Rph to notify prescriber of substitution
 - Made an international splash

Biosimilars - Conclusion

- Large, complex, protein medications based on a reference product
 - Complex and expensive production / manufacturing process
- May enter market after reference product has 12 years of exclusivity
- Designed to be interchangeable with reference product
 - May be less expensive

References